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A numerically more efficient and accurate co-Kriging model is developed, and incorporated into particle swarm optimization to be 

applied to optimal design of electromagnetic devices. The sampling points in the co-Kriging consist of a few expensive data and many 

cheap data to save the computational efforts while increasing modeling accuracy. The proposed algorithm is validated through an ana-

lytic example, and applied to an optimal transposition design of a power transformer to minimize its circulating current loss.  
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I. INTRODUCTION 

PTIMIZATION PROBLEMS in electromagnetic (EM) design 

are popularly tackled by using heuristic search algorithms 

such as particle swarm optimization (PSO), differential evolu-

tion. They provide a global optimum solution in most case. 

Their applications to engineering problems, however, open 

have difficulties because they usually requires huge computa-

tional cost related with evaluating objective function values 

using numerical simulation such as finite element analysis 

(FEA) [1]. In order to overcome the difficulties, Kriging as-

sisted heuristic optimization algorithms, where a Kriging effi-

ciently provides approximate objective function values in 

place of numerically expensive FEA, are attracting more atten-

tion [2]. In general, the prediction accuracy of a Kriging is 

guaranteed only when enough sampling data is provided.  

In an optimal transposition design of a power transformer to 

reduce the circulating current loss among parallel conductors, 

the enough sampling data are hardly available because the loss 

is obtained through numerically very expensive 3-D non-linear 

time-stepping FEA. Furthermore, due to the very big time-

constant of a power transformer, a steady state circulating cur-

rent loss only can be obtained after the computation of several 

days using a personal computer of common speed [3]. On the 

other hand, axisymmetric 2-D non-linear time-stepping FEA 

provides only rough (inaccurate) sampling data although it 

reduces the computing time dramatically.  

Hereinafter in this paper, the sampling data from 3-D FEA 

and 2-D FEA will be referred to numerically expensive data 

and cheap data, respectively.  

According to Kriging theory, both the expensive and cheap 

data are not expected to provide a reasonable Kriging because 

of the lacks of sampling data and accuracy, respectively [4].  

This paper proposes, based on ordinary Kriging, a co-

Kriging model which takes most of the sampling data from 

cheap data while only some from expensive data. The sug-

gested co-Kriging is validated through investigations with 

analytic function, and combined with PSO to be applied to the 

optimal transposition design of a power transformer.   

II. CO-KRIGING METHODOLOGY 

A co-Kriging exploits the correlation between expensive and 

cheap data to enhance the prediction accuracy based on the 

assumption that the expensive ones are always more accurate 

than the cheap ones [5]. It, therefore, always interpolates the 

expensive data while utilizing the cheap data as weights 

which influence the interpolation mainly in the regions where 

expensive data are absent.  

The co-Kriging predicts a function value as follows:  
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where Nc and Ne are the numbers of cheap and expensive data, 

respectively, Zc(∙) and Ze(∙) are objective function values from 

cheap and expensive data, respectively, and the weighting 

coefficients αi(∙) and βj(∙) are found from the following equa-

tions:  
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where Cov(∙,∙) is the Gaussian covariance function of which 

the best correlation parameter θ is found by using maximum 

likelihood estimation, μ1 and μ2 are Lagrange multipliers. 

In the numerical implementation of the co-Kriging, the 

number of expensive data is kept very small while that of 

cheap data is allowed to be relatively large. 

III. CO-KRIGING ASSISTED PSO ALGORITHM 

A PSO algorithm assisted by the co-Kriging is summarized 

as follows: 

Step 1: Construction of cheap data (Xc, Zc) : generate initial 

Nc sampling points (Xc) by using Latin hypercube de-

sign in the whole design space, and calculate the ob-

jective function values (Zc) for the Xc. In this paper, 

the circulating current losses are obtained through ax-

isymmetric 2-D non-linear time-stepping FEA. 
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Step 2: Construction of expensive data (Xe, Ze) : select Ne 

sampling points from the Xc to form Xe so that Xe is a 

subset of Xc, and calculate the objective function val-

ues (Ze) for the Xe. In this paper, the circulating cur-

rent losses are obtained through 3-D non-linear time-

stepping FEA. 

Step 3: Construction of co-Kriging based on ordinary Kriging 

utilizing (Xc, Zc) and (Xe, Ze).  

Step 4: Find an optimum design by using PSO algorithm 

where objective function values will be provided from 

the co-Kriging. 

IV. NUMERICAL EXAMPLES 

A. Analytic Function 

In order to investigate the performance of the co-Kriging, a 

two-dimensional analytic function is taken as an example as 

follows: 
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The expensive and cheap data are generated as follows: 
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where Rnoise is random noise. 

In order to evaluate and compare the fitting errors, root 

mean square error (RMSE) and determination coefficient R
2
 

are defined as follows:  

   

* 2

1

2 *

1 1

RMSE [ ( ) ( )]

( ) ( ) ( ) ( )

NTS

i ii

NTS NTS

i i i ii i

Z Z NTS

Z Z Z Z



 

 

  



 

x x

R x x x x

 (5) 

where NTS=40×40 is number of testing points uniformly dis-

tributed, Z
*
(∙) and Z(∙) are predicted and true values, respec-

tively. It is reported that the fitting quality increases as the 

determination coefficient approaches to one [6].   

Fig. 1 compares the fitting errors for ordinary Kriging (OK) 

and co-Kriging, where it is found that the co-Kriging, with the 

help of ten expensive data, has a better fitting accuracy than 

the OK from only cheap data without increasing the compu-

ting time too much.  

Table I compares the fitting performances, where the co-

Kriging has determination coefficient of almost one and finds 

almost same optimum point with true optimum point when it 

is combined with PSO algorithm.   

B. Design of Power Transformer Winding 

The low voltage winding of a power transformer, in general, 

carries out very large current, and is composed of many heli-

cal-type parallel conductors to reduce the eddy current loss in 

winding. As the number of parallel conductors increases, alt-

hough the eddy current loss in the winding decreases, there 

exist higher possibility of increasing circulating current loss 

unless transposition of the windings are not properly designed.  

In this paper, an optimal transposition design is achieved by 

using the suggested co-Kriging assisted PSO algorithm. The 

specifications of a three-phase power transformer model are 

shown in Table II. 

For the construction of sampling data, a few expensive data 

are obtained through 3-D non-linear time-stepping FEA while 

most sampling data through axisymmetric 2-D time-stepping 

FEA. The circulating current loss to be minimized is calculat-

ed as follows: 
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where nc is number of parallel conductors, the subscripts 1 

and 2 denote high and low voltage, respectively, and e stands 

for induced voltage from flux linkage variation. 

In the version of full paper, optimal design results will be 

presented in detail as well as the FEA results. 
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Fig. 1 Fitting errors for analytic function, where sampling data for the  

OK_cheap_data and OK_expensive_data are composed of only cheap and 

expensive data, respectively, and those of co-Kriging include only ten 

expensive data.  
TABLE I 

MINIMIZATION OF THE ANALYTIC FUNCTION 

` Nc Ne R2 Optimal design 

Analytical - - - (-0.8003, -1.4251) 

Kriging 
100 0 0.9930 (-0.8042, -1.4645) 

0 100 0.999999 (-0.8005, -1.4240) 

Co-Kriging 90 10 0.99998 (-0.8005, -1.4229) 

TABLE II 

SPECIFICATIONS OF POWER TRANSFORMER MODEL 

capacity 
Sub-staining 

bars 
High/low 
voltage 

Winding 
turns 

Parallel 
conductors 

370MVA 32 242/20kV 60 92 

 


